5.РЕТОПОЛОГИЯ

<< 4.Топология

Данный раздел не имеет непосредственного отношения к этапам проектирования сети, однако информация, приведённая здесь, крайне полезна при выборе топологии и процента проникновения будущей сети. Под ретопологией мы будем понимать процесс изменения топологии сети для увеличения абонентской базы. Тем провайдерам, которые сразу проектируют сети под 100%-ное проникновение, данный раздел будет не интересен, т.к. ретопология их сетям со временем не понадобится. Однако для большинства PON провайдеров, которые не могут позволить себе такую роскошь, как 100%-ный охват абонентов, раздел будет полезен.

 

Чтобы быстрей вникнуть в суть проблемы, давайте сразу перейдём к примерам. Есть посёлок на 512 домов, из которых провайдер хочет подключить 50% – 256 домов. В качестве головной станции был выбран всем полюбившийся OLTBDCOMP3310Bна 4 EPON порта (коэффициент ветвления 1:64), из которых задействуются все 4. На рисунке 5.1 представлена упрощённая схема сети через пару месяцев после запуска (чтобы не загромождать рисунок, на схеме отображены только 2 поддерева из 4). Для проекта выбраны 2 древовидные топологии: «1х16+1х4» (первое поддерево) и «1х2+1х8+1х4» (второе поддерево). Это сделано специально, чтобы в последствии определить, какой из вариантов лучше подходит для ретопологии.

proect11Рисунок 5.1 — упрощённая схема проекта с указанием количества подключённых к каждому сплиттеру абонентов

На каждом сплиттере указано количество подключённых к нему абонентов, из чего видно, что абоненты разбросаны по карте достаточно хаотично: некоторые абонентские сплиттеры заняты полностью, а к некоторым не подключен ни один абонент. Если в секторе, который обслуживается полностью заполненным сплиттером 1х4, появятся новые клиенты, то провайдер столкнётся с проблемой: с одной стороны, 64 абонентов на порту ещё нет, поэтому подключать новых абонентов можно, а с другой стороны, – некуда (все выходы сплиттера заняты).

У провайдера есть 2 пути выхода из положения. Если динамика роста абонентской базы высокая (другими словами, если много заявок на подключение), то ретопологии сети не избежать. Если же заявок мало и в ближайшее время приток новых абонентов не предвидится, то можно обойтись без ретопологии. Как? – Установить абонентский сплиттер бо́льшей ёмкости. В нашем случае, если абонентский сплиттер 1х4 занят, то его можно заменить сплиттером 1х8. ВНИМАНИЕ! Такой заменой сплиттеров мы делим сигнал на 128 (1х16+1х8)! Данный метод необходимо применять с большой осторожностью.8 Использование каскада сплиттеров с делением на 128 может пагубно отразиться на мощности сигнала: оптический бюджет потерь может превысить оптический бюджет мощности PON (30 dB). В этом случае ONU будут работать не стабильно или не будут работать вообще.

 

Примечание8: Данный метод рекомендуется использовать только опытным PON-щикам, которые отдают себе отчёт в том, что сигнал, приходящий на ONU, должен быть в худшем случае -26 dBm, но никак не меньше!

 

Некоторые провайдеры, не смотря на предостережения, сразу делят поддеревья на 128 узлов, предвидя сильный разброс абонентов. Такой метод получил название «разведка строительства» (Рисунок 5.2).

proect12Рисунок 5.2 — упрощённая схема проекта с указанием количества подключённых абонентов (метод «Разведка строительства»)

Данная схема ничем не отличается от схемы, показанной на рисунке 5.1, кроме абонентских сплиттеров. И первое и второе поддерево в текущей схеме поделены не на 64, а на 128 узлов: топологии «1х16+1х8» и «1х2+1х8+1х8» соответственно. Заметьте, что число абонентов на порт не превышает 64, но при этом есть возможность подключать абонентов где угодно и не беспокоиться о том, что ёмкости абонентского сплиттера не хватит, т.к. суммарная ёмкость абонентских сплиттеров обеспечивает 100%-ное проникновение.

Такой подход, конечно, рискованный (может не хватить оптического бюджета), однако он позволяет сэкономить на OLT-ах при низком стартовом бюджете проекта, и при этом учесть неравномерную плотность абонентов на разных участках карты.

Вернёмся к основной теме нашего раздела (ретопологии) и снова обратимся к схеме, изображённой на рисунке 5.1. Допустим, что провайдер ошибся с выбором процента проникновения, т.к. все поддеревья уже почти заполнены, а заявки на подключение продолжают поступать в большом количестве. Чтобы продолжать подключать новых, абонентов провайдеру необходимо масштабировать свою сеть под больший процент проникновения; при этом масштабирование должно проходить максимально быстро, чтобы текущие абоненты не жаловались на постоянные ремонтные работы и отсутствие Интернета.

Как уже отмечалось в 3-ем разделе, масштабирование сети проходит наиболее эффективно при удвоении абонентской базы. Это наглядно продемонстрировано на рисунке 5.3.

proect13Рисунок 5.3 — варианты ретопологии методом удвоения

При помощи простой ретопологии, построенной на замене абонентских и корневых сплиттеров, мы добиваемся удвоения процента проникновения. При этом замена может происходить не сразу, а в 2 этапа:

1) Замена корневого сплиттера 1хN на 2 сплиттера 1х;

2) Замена абонентских сплиттеров 1хN на сплиттера 1х2N.

Если какое-то из поддеревьев OLT-а насыщено (достигло 64 абонентов) или приближается к насыщению, а заявки на подключение ещё есть, то можно сначала заменить корневые сплиттеры, а абонентские сплиттеры менять потом, по мере необходимости.9 Это позволяет свести к минимуму неудобства текущих абонентов во время проведения ремонтных работ.

 

Примечание9: Нужно понимать, что заменяя 1 корневой сплиттер на 2, мы увеличиваем количество поддеревьев – следовательно, понадобится ещё один свободный EPON порт (а если его нет, то новый OLT).

 

Стоит обратить внимание, что приведённые на рисунке 5.3 варианты ретопологии не затрагивают схему трассировки волокон – она остаётся прежней (правда, схему кроссировки в оптических узлах придётся слегка подправить из-за увеличения количества корневых сплиттеров). Нужно учитывать, что любое масштабирование сети предусматривает наличие резервных волокон – в приведённых схемах резерв волокон необходим только на магистральном участке.

Существует ещё одна интересная и довольно популярная схема ретопологии (Рисунок 5.4). В отличии от схем, продемонстрированных на рисунке 5.3, здесь корневой сплиттер не заменяется парой других сплиттеров, а просто удаляется. Таким образом, на первом этапе мы превращаем 3х каскадное дерево в пару 2х каскадных, а на втором этапе производим замену абонентских сплиттеров. Стоит отметить, что в данном варианте ретопологии в качестве корневого сплиттера может использоваться только сплиттер 1х2; причём, его желательно устанавливать непосредственно в серверной (рядом с OLT-ом) – тогда «разделение деревьев» будет проходить максимально быстро.

proect14Рисунок 5.4 — вариант ретопологии методом удвоения

Вооружившись несколькими вариантами схем ретопологии, можно вернуться к рассмотрению рисунка 5.1 и определить, топология какого поддерева позволит удвоить абонентскую базу наиболее быстро и с минимальными трудозатратами. Ответить на этот вопрос однозначно достаточно сложно, т.к. для обоих поддеревьев процесс ретопологии потребует минимум монтажных работ, однако ретопология второго поддерева пройдёт немного быстрей. Это произойдёт потому, что корневой сплиттер второго поддерева находится в серверной (по крайней мере, должен находиться), а монтажные работы в помещении всегда проходят быстрее, чем «в поле».

Пару слов стоит сказать о ретопологии шины. В отличие от дерева, масштабировать шину под бо́льший процент проникновения немного сложнее. Допустим, у нас есть шина, построенная по топологии «16FBT+1×4» (процент проникновения = 50%) и её необходимо перестроить под 100%-ное проникновение (Рисунок 5.5).

proect15Рисунок 5.5 — ретопология шины «16FBT+1×4» в 2 шинs «8FBT+1×8»

Как мы видим, ретоплогия шины займёт значительно больше времени, чем ретопология дерева. На первом этапе ретопологии дерева необходимо заменить только корневой сплиттер; здесь же приходится менять половину каскада FBT сплиттеров. Кроме того, в дереве резерв волокон осуществлялся на небольшом по протяжённости магистральном участке (от OLT-а до корневого сплиттера); в случае с шиной резервное волокно приходится «протягивать» через полкарты – это заметно увеличивает кабельную инфраструктуру.

6.Трассировка волокон и выбор ёмкости кабеля >>