SiteHeart    SiteHeart

1.3 Принцип действия GEPON

Как уже упоминалось ранее, GEPON – древовидная сеть, построенная на пассивных оптических составляющих на всём протяжении от провайдера к абоненту.

На стороне провайдера устанавливается OLT (англ. Optical Linear Terminal – Оптический Линейный Терминал) – L2 или L3 свитч со всеми вытекающими отсюда функциональными возможностями, имеющий Uplink порты (обычно стандарта Ethernet) и Downlink порты (работающие в рамках стандартов IEEE 802.3ah).

В последнее время все производители GEPON оборудования имеют широкий модельный ряд головных станций (OLT), которые, в основном, отличаются количеством Downlink портов (непосредственно для подключения пассивных деревьев), количеством и скоростью Uplink портов (например, 1Гбит/с или 10Гбит/с) и программно-аппаратным функционалом (L2 или L3).

*например, китайская компания BDCOM имеет 3 линейки головных станций:

  • Low-level (P33XX) – OLT’ы для небольшого количества абонентов (256) с 4-мя Uplink и 4 Downlink портами;
  • Mid-level (P36XX) – OLT’ы для среднего количества абонентов (512…1024), имеют 8…16 портов Downlink, столько же Uplink и 2х10Гбит/с дополнительных Uplink;
  • Tol-level (P69XX, P85XX) – гигантские фабрики по производству GEPON траффика с более чем 16-ю GEPON портов и прочими прелестями;*

Управление OLT производится как через терминальный порт, так и с помощью всеми любимых протоколов типа SNMP, SSH и TELNET.

На стороне клиента устанавливается ONU (англ. Optical Network Unit – Оптическая Сетевая Единица), которую также иногда именуют ONT (англ. Optical Network Terminal – Оптический Сетевой Терминал) – специализированныйVLAN свитч небольшого размера. ONU от того же BDCOM стандартно имеет один оптический гигабитный порт и 4 медных (100Mbps или 1Gbps). Есть модели ONU с комбинированным оптическим портом для телевидения и данных, с портами для телефонии (SIP), с разным количеством медных портов, с Wi-Fi-адаптером, а также комбинации всех вышеперечисленных. Каждая ONU имеет встроенный фильтр MAC-адресов; при получении пакета ONU проверяет принадлежность пакета и, если пакет принадлежит не ей, отбрасывает его. Управление ONU происходит непосредственно с OLT, при этом OLT считает ONU своим собственным «удалённым портом».

Между клиентом и провайдером располагается пассивная оптическая сеть, которая имеет топологию дерева и её производные. Основными компонентами пассивной оптической сети являются оптические волокна и оптические сплиттеры (англ. Splitter — разделитель), работающие в режиме «разветвитель» в направлении провайдер-клиент и в режиме «смеситель» в обратном направлении. Несомненными преимуществами пассивного оборудования являются его независимость от питания и простота в эксплуатации: будучи единожды установленным, пассивное оборудование нуждается лишь в периодической профилактике (часто лишь в виде визуального осмотра).

 

Принципиальная схема включения PON

Рисунок 1 – Принципиальная схема включения PON

Поскольку пассивные оптические сети физически являются соединением со множественным доступом (точка-многоточка), в них необходимо разделять прямые и обратные потоки данных, а также координировать связь между множеством абонентских устройств и головной станцией. Для этого используется сразу две технологии для передачи данных в разделяемой между многими абонентами среде: временное и частотное мультиплексирование.

Временное Мультиплексирование (англ. TDM — TimeDivisionMultiplexing) действует со стороны OLT, который определяет, в какие моменты времени конкретному абонентскому устройству разрешено вещание в общую среду передачи данных. Со стороны ONU действует TDMA (англ. TimeDivisionMultipleAccess – Множественный Доступ С Разделением По Времени), согласно которому абонентское устройство подчиняется OLT.

В то же самое время во всей пассивной оптической сети действует технология WDM (англ. WavelengthDivisionMultiplexing – Мультиплексирование с разделением по длине волны), которая разносит прямой (нисходящий от OLT к ONU) и обратный (восходящий от ONU к OLT) потоки данных на разные длины волн (частоты). При этом нисходящий поток передаётся на длине волны 1490нм, а восходящий – на длине волны 1310нм. Сделано это для того, чтобы избежать коллизий («столкновения» прямого и обратного потоков на одной длине волны), а также оставить место для CATV (аналоговое телевидение), которое также можно пустить по дереву PON до абонента. Передатчики CATV вещают на длине волны 1550нм или 1310нм, но производители GEPON оборудования заняли длину волны 1310nm для UpStream, чтобы максимально удешевить клиентское устройство (лазеры, излучающие на длине волны 1310нм намного дешевле лазеров, излучающих на длине волны 1550нм).

Стоимость лазерных GEPON приёмо-передатчиков достаточно высокая по отношению к их Ethernet-собратьям, и не случайно: они очень мощные. Их мощности хватает на то, чтобы «пробить» более 100 км стандартного оптического волокна по прямой! Однако, PON-деревья в глубину достигают обычно всего лишь 10-15 км, имея предел по глубине в районе 20км. Связано это с тем, что пассивные оптические делители вносят в линию огромное затухание сигнала, обеспечивая при этом ветвление и экономя оптическое волокно.

Стоит отметить, что стандарт GEPON несколько отличается от привычного всем Ethernet структурой кадра, поэтому «не-GEPON» устройства в сети PON работать не будут.   Мало того, стандарт IEEE 802.3ah был принят относительно недавно, и почти никто из производителей не соответствует ему на 100% (да многие и не особо хотят). В силу этого, отсутствует полная кросс-платформенная совместимость оборудования (например, OLT от D-Link не будет работать с ONU от ZTE, или OLT от HUAWEI не будет раскрывать весь свой потенциал при работе с ONU от BDCOM).

*На самом деле, совместимость разных производителей возможна, но не на 100%; траффик между OLT и ONU, возможно, будет «ходить», однако, полное управление OLT’ом «неродных» ONU никто не гарантирует.*

 

Следует отдельно рассмотреть технологию обмена данными между ONU и OLT:

  • любая ONU вещает только в момент времени, отведённый для нее OLT (TDMA);
  • для любой ONU в сети OLT определяет временной промежуток, в течение которого ONU может вещать (TDM);
  • вновь подключённая ONU взаимодействует с OLT по протоколу MPCP (англ. Multi-PointControlProtocol – Протокол Управления Многоточечным Обменом);
  • любая ONU не может связываться с другими ONU без участия в связи OLT`а. Все пакеты для любого адресата централизованно обрабатывает одно устройство в сети – OLT.

 

 

Распределение временных промежутков между ONU

Рисунок 2 – Распределение временных промежутков между ONU

Для поддержки присвоения временных доменов с помощью OLT, группой IEEE 802.3ah был разработан протокол MPCP. Этот протокол базируется на двух сообщениях Ethernet: GATE и REPORT. Сообщение GATE посылается от OLT к ONU и используется для присвоения временного домена. Сообщение REPORT используется ONU для информирования OLT о своем состоянии (заполненность буфера и т.д.), чтобы помочь ему принять правильное решение о выделении временного домена. Как GATE, так и REPORT-сообщения являются кадрами управления MAC (тип 88-08).

Существует два режима работы MPCP: автодетектирование (инициализация) и нормальный режим. Режим автодетектирования используется для детектирования вновь подключенных ONU и определения RTT (англ. Round Trip Time – время от момента посылки запроса до момента получения ответа) и MAC-адреса этого ONU. Нормальный режим используется для присвоения временных доменов всем инициализируемым ONU.

Стандартные Ethernet кадры в PON немного модифицируются под специфику работы в разделяемой по принципу TDM среде, однако, OLT модифицирует выходящие пакеты так, что на выходе из PON получается стандартный Ethernet поток. В обратном направлении ситуация аналогичная. Структура стандартного Ethernet кадра (IEEE 802.3), PON кадра (IEEE P802.3ah) и управляющего кадра IEEE P802.3ah представлена ниже (Рисунок 3):

Сравнение полей кадров IEEE 802.3 и IEEE P802.3ah

Рисунок 3 – Сравнение полей кадров IEEE 802.3 и IEEE P802.3ah

Преамбула стандартного кадра Ethernet (Рисунок 3а), модифицируется добавлением нескольких служебных полей (Рисунок 3б):

  • SOP (англ. Start Of Packet) – 1 байт, указывает на начало кадра;
  • Резервное поле, 4 байта;
  • LLID (англ. Logical Link Identificator) – 2 байта, указывает индивидуальный идентификатор узла EPON. Остается открытым вопрос: сколько идентификаторов может иметь абонентский узел ONU – один или несколько? LLID требуется для эмуляции соединений точка-точка и точка-мультиточка в сети EPON. Первый бит поля указывает режим передачи кадра (unicast или multicast). Остальные 15 бит содержат индивидуальный адрес узла EPON;
  • CRC (англ. Сircle Redundancy Check) – 1 байт, контрольная сумма по преамбуле (стандарт P802.3ah).

При выходе кадра из сети GEPON преамбула кадра преобразуется к стандартному виду – тег ликвидируется. Например, в прямом потоке OLT модифицирует преамбулу каждого входящего в PON кадра 802.3, в частности, в преамбулу добавляется специальный тег LLID. Этот тег извлекается соответствующим подуровнем на ONU, где происходит восстановление преамбулы. Узел ONU в нормальном режиме работы, т.е. когда уже зарегистрирован, обрабатывает только те кадры, в преамбуле которых идентификатор LLID совпадает с собственным LLID. Остальные поля кадра EPON совпадают с полями стандартного кадра Ethernet:

  • DA (англ. Destination Address) – 6 байт, указывает MAC-адрес станции назначения. Это может быть единственный физический адрес (unicast), групповой адрес (multicast) или широковещательный адрес (broadcast);
  • SA (англ. Source Address) – 6 байт, указывает MAC-адрес станции отправителя;
  • L/T (англ. Length/Type) – 2 байта, содержит информацию о длине или типе кадра;
  • Поле данных, переменной длины;
  • PAD (наполнитель) – поле используется для дополнения кадра до минимального размера;
  • FCS (англ. Frame Check Sequence) – 4 байта, контрольная сумма кадра, вычисленная с использованием циклического избыточного кода;
  • OpCode (англ. Optional Code) – 2 байта, уточняет тип управляющего кадра. Существуют две категории управляющих кадров, отличающиеся значением этого поля: сообщения GATE, генерируемого OLT, и сообщения REPORT, генерируемого ONU;
  • TS (Time Stamp) – 4 байта, содержит временную метку отправителя;
  • message – 40 байтов, собственно в этом поле содержится служебная информация, необходимая для работы протокола MPCP.

Более подробную информацию о логической работе PON можно получить на http://book.itep.ru.

OLT и ONU обеспечивают инкапсулирование данных в модифицированные Ethernet кадры стандарта IEEE P802.3ah, при этом используется канальное кодирование 8B/10B (8 пользовательских бит преобразуются в 10 канальных).

Окончательный алгоритм работы сети PON после настройки выглядит следующим образом:

  •  ONU «слушает линию»;
  • OLT получает пакет стандарта IEEE 802.3 от вышестоящего устройства и модифицирует его под стандарт IEEE P802.3ah;
  • OLT отсылает пакет конкретному адресату (ONU);
  • Все ONU получают пакет, но только адресат оставляет его себе – остальные пакет отбрасывают;
  • ONU модифицирует пакет стандарта IEEE P802.3ah под стандарт IEEE 802.3 и отдаёт его клиентскому ПК;
  •  ONU получает пакеты с клиентского ПК, модифицирует их из стандарта IEEE 802.3 под стандарт IEEE P802.3ah и буферизирует;
  • OLT разрешает передачу данных конкретной ONU;
  • ONU вещает определённое количество времени, а затем замолкает и снова «слушает» линию;
  • OLT получает от ONU пакет стандарта IEEE P802.3ah, модифицирует его под стандарт IEEE 802.3, после чего передаёт его вышестоящему устройству.

Алгоритм работы сети PON по преобразованию пакетов из одного стандарта в другой можно представить следующим образом (Рисунок 4):

Алгоритм работы PON по преобразованию пакетов

Рисунок 4 – Алгоритм работы PON по преобразованию пакетов

 << Виды PON       Сравнение PON с классической FTTH схемой подключения абонентов >>